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can be compared with the calculations. Such data are plotted in Fig. 7. It is readily apparent 
that the experimental data agree more closely with the results obtained by the use of the elasto-

• plastic model than wi th those obtained by the use of the fluid model. 
Peak particle velocity as a function of distance is shown in Fig. 8 for the case of an 

aluminum plate hi tting a copper target. Again, the resul ts obtained with the elastoplastic model 
more nearly agree with the experimental data than do the results from the fluid model. This 

• result is obtained for all reasonable representations of the Hugoniot data of aluminum and 
copper, i.e., different pairs of values of the parameters A and K. 
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Fig. 8. Peak Particle Velocity in Copper Target Hit by an Aluminum Projectile 

v. Conclusions 

The numerical method for calculating shocks developed by von Neumann and Richtmyer [1] 
has been successfully applied to a problem involving an elastoplastic stress-strain relation. 
Comparison of the results of the numerical work with the results of experiments shows that 
elastoplastic behavior of aluminum and copper is required to account for the observed rapid 
attenuation of shock waves. Present results are valid for stresses up to 0.1 megabar in alumi­
num and up to 0.15 megabar in copper. 
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